

INDIAN SCHOOL AL WADI AL KABIR

Practice Paper-Term 1(2024-25)

SUB: Mathematics (041)

Date: 08/09/2024 Time Allowed: 3 hours

Class: XII Maximum Marks: 80

General Instructions:

- 1. This Question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- 4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.
- 5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

1. If
$$f(x) = \begin{cases} \frac{\cos x}{\frac{\pi}{2} - x} \\ k, x = \frac{\pi}{2} \end{cases}$$
, $x \neq \frac{\pi}{2}$ is continuous at $x = \frac{\pi}{2}$ then value of k.

2.
$$\begin{vmatrix} x & 4 \\ -3 & x \end{vmatrix} = \begin{vmatrix} 5 & 0 \\ -1 & 4 \end{vmatrix}$$
 then value of x .

A
$$\pm 20$$
 B $+4\sqrt{2}$ **C** $+2\sqrt{2}$ **D** ± 4

3. If
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 3 \\ -1 & 0 & 3 \end{pmatrix}$$
, $|A.adjA| = _____$

A 1 B 3 C 9 D 27

4. Which of the following function is one to one and onto?

A
$$f(x) = 2x + 3, f: R \text{ to } R$$
 B $g(x) = x^3, f: Z \text{ to } Z$ **C** $h(x) = \sin x, f: R \text{ to } R$ D $p(x) = |x|, f: R \text{ to } R$

If $A = \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$ then A^{-1} 1

A
$$\begin{bmatrix} 4 & 5 \\ 2 & 3 \end{bmatrix}$$
 B $\begin{bmatrix} -2 & 2 \\ 1 & -3 \end{bmatrix}$ **C** $\begin{bmatrix} 2 & -\frac{5}{2} \\ -1 & \frac{3}{2} \end{bmatrix}$ **D** $\begin{bmatrix} 2 & \frac{5}{2} \\ \frac{3}{2} \end{bmatrix}$

The domain of the function $sin^{-1}(2x-1)$ 1 6.

D [0, 1] \mathbf{C} (-1, 1)A [-1, 1] **B**

7. The value of x if A is a singular matrix, where $A = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & -3 \\ r & 3 & 0 \end{pmatrix}$: 1

 \mathbf{C} 3 B 2 1 A D 8. $\sin^{-1}\left(\sin\frac{5\pi}{2}\right) + \cos^{-1}(\cos 3\pi) =$ 1

 $\mathbf{A} \quad -\frac{\pi}{2} \quad \mathbf{B} \quad \frac{3\pi}{2} \quad \mathbf{C} \quad \frac{\pi}{2}$ D π

9. 1

If $y = \log(\log(x^5))$ then $\frac{dy}{dx}$ **A** $\frac{x^5}{\log x^5}$ **B** $\frac{x}{\log x^5}$ **C** $\frac{5}{x \log x^5}$ **D** $\frac{5}{x^5 \log x^5}$

10. If $x = \sqrt{a^{sin^{-1}t}}$ and $y = \sqrt{a^{cos^{-1}t}}$ then $\frac{dy}{dx}$ is equal to: 1

A $\frac{y}{x}$ B $-\frac{y}{x}$ C $\frac{x}{y}$ D

11. $\int_{-\pi}^{\pi} (x^3 + x\cos^3 x + \tan x + 1) \, dx = \underline{\qquad}$ 1

0 B $\frac{\pi}{2}$ C π D 2π

12. If $y = tan^{-1}\left(\frac{cosx}{1-sinx}\right)$, then $\frac{dy}{dx} =$ _____

-1A 0 B \mathbf{C} D π

13. In which of the following interval $y = x^3 - 3x$ is strictly decreasing?

 $(-\infty,1)$ **B** (-1, 1) C **D** $(-1, \infty)$ $(1,\infty)$

14. The maximum value of |1 + cos3x| =1

1 \mathbf{C} 2 A 0 B D 3

15.			_								
13.		_		_		_				ninute and	1
		-		_				rectangle		=10cm and	1
	•									2 2 1 1	
1.		_			•			n²/min	D	2cm ² /mir	ı
16.		,,,		station							1
	A	x = e	В	s x=1	C	x	$=\frac{1}{e}$	D		x = 0	
17.	$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1+5}$	$\frac{x}{x}dx$:									1
	A	2	В	1	C		0	D		-1	
18.	$\int \frac{1}{x+x}$	$\frac{1}{\log x} dx$	=								1
	A $1 + l$	logx + c	B .	xlogx + c	c C	logx	+ x +	c D	log(1	+ log x) + C	
		A	SSER	TION-R	EASO	N B	ASED	QUESTI	IONS		
	In the following questions (19 and 20), a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.									•	
		_			l R is t	he co	rrect e	explanation	on of	A.	
	B) Botl	h A and	R are	true but	Risn	ot the	e corre	ect explar	nation	of A.	
	C) A is	true bu	t R is	false.							
	D) A is	false b	ut R i	s true.							
19.		(A)Every scalar matrix is a diagonal matrix(R) In a diagonal matrix all diagonal elements are 0.							1		
	A			В		C			Γ)	
20.	, ,	-		s increase if $f'(x)$	_)				1
	A			В		C			Ε)	
	SECTION B										

21.	a) Show that $f(x) = Sinx$, $f: R$ to R is neither one to one nor onto. OR	2
	b) Evaluate: $tan^{-1}(-1) + cot^{-1}(-\sqrt{3}) + cos^{-1}(-\frac{1}{2})$	
22.	$Find \frac{dy}{dx} if x^2 + 3xy + y^2 = 10. OR$	2
	If $y = cost + logtan \frac{t}{2}$, $x = sint$, show that $\frac{dy}{dx} = tant$	
23.	Evaluate: $\int e^x \left(\frac{x-3}{(x-1)^3}\right) dx$	2
24.	Simplify: $tan^{-1}\left(\frac{cosx}{31-sinx}\right)$	2
25.	Write $a \ 2 \times 2 \ matrix \ if \ A = \left[a_{ij}\right] \ and \ a_{ij} = \frac{2i-j}{2}$.	2
	SECTION C	
26.	a) Evaluate using properties of integrals: $\int_{-1}^{1} \frac{x^3 + x + 1}{x^2 + 2 x + 1} dx$ OR	3
	b) Evaluate using properties of integrals: $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}1} \frac{1}{1+\sqrt{tanx}} dx$	
27.	If $f(x) = 9x^2 + 6x - 1$, $f: N$ to range of f , then show that f is one to one. Also evaluate x if $f(x) = 14$.	3
28.	Find the derivative of $x^x + (x)^{\log x}$ with respect to x	3
29.	Express $A = \begin{pmatrix} 4 & 0 & 1 \\ 2 & 1 & 3 \\ -1 & 2 & 6 \end{pmatrix}$ as the sum of a symmetric and a skew symmetric matrix.	3
30.	Find the intervals in which the function $f(x) = sinx + cosx$, $x \in [0, 2\pi]$	3
31.		3
	Evaluate: $\int \frac{\cos x}{(1+\sin x)(2+\sin x)} dx$	

SECTION D

- Given: $A = \{1, 2, 3, 4, ..., 10\}$. Prove that the relation R on the set AXA defined by (a, b)R(c, d), if f(ad) = bc, $\forall (a, b), (c, d) \in AXA$ is an equivalence relation.
- 33. If $x^m y^n = (x + y)^{m+n}$ then prove that $\frac{dy}{dx} = \frac{y}{x}$ and $\frac{d^2y}{dx^2} = 0$ OR

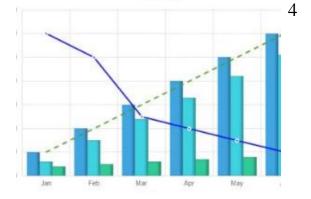
 If $x\sqrt{1+y} + y\sqrt{1+x} = 0$ then prove that $(1+x)^2 \frac{d^2y}{dx^2} + 2(1+x) \frac{dy}{dx} = 0.$
- 34. Solve using matrices: 2x + y + z = 4, x + y + z = 2, x + 2y z = 5
- 35. a) Evaluate: $\int_0^{\pi} \frac{x \tan x}{s e c x + t a n x} dx \qquad OR \qquad b) \qquad \int_1^2 \frac{5 x^2}{x^2 + 4 x + 3} dx$

SECTION E- Case study-based questions

36. A window is to be made with certain information to get maximum air and light through it. Window is in the form of a rectangle surmounted by a semi-circular opening. Total perimeter of the window is 10m.

Based on the above information answer the following:

Let A be the area of the window, x be the width of rectangular part and r be the radius of the semicircle.



4

- a) Find the critical point of A.
- b) Find the dimensions of the window to admit maximum light.
- 37. Profit function of a company is given by $p(x) = 41 + 72x 18x^2$
 - i) Find the profit when x=1.
 - ii) In which interval p(x) is strictly increasing?
 - iii) a) Find the maximum profit?

 OR

 b) Find the absolute minimum value of p(x) in [0, 3]

38. In an election, a political group hired a public relation firm to promote their candidate in three ways: telephone, house calls and letters. The cost per contact is given as follows:

Telephone ₹ 0.10, House call ₹ 1.00 and letter ₹ 2.00.

If the number of contacts made in two cities X and Y are given below:

City	Telephone	House call	Letter
X	1000	500	5000
Y	3000	1000	10,000

4

- a) If A is a 2×3 matrix and B is a 3×1 , what is the order of matrix AB?
- b) What is the total amount spent on telephone calls by the political group in both the cities together?
- c) Using matrices find the total amount spent in each cities X and Y.

OR

Find P if
$$P\begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 1 \\ 6 & 3 \end{bmatrix}$$
.

Answers Key

Q1	В	Q2	С	Q3	D	Q4	A	Q5	С	
Q6	В	Q7	A	Q8	В	Q9	С	Q10	В	
Q11	D	Q12	С	Q13	В	Q14	С	Q15	D	
Q16	A	Q17	В	Q18	D	Q19	С	Q20	D	
Q21	$\int 5\pi$ d			$\frac{dy}{dx} = -\frac{2x + 3y}{3x + 2y}$			$e^x \left(\frac{1}{(x-1)^2}\right) + C$			
Q24	$\frac{b}{4}$ $\frac{\pi}{4} + \frac{x}{2}$	Q25		$\begin{pmatrix} \frac{1}{2} & 0 \\ \frac{3}{2} & 1 \end{pmatrix} \qquad \qquad Q26$			a) $2\log 2$ b) $\frac{\pi}{12}$			
Q27	$x=1 Q28 x^x(1+logx) + 2logx$					logx.(x)	$(x)^{logx-1}$			
Q29	$\begin{pmatrix} 4 & 1 \\ 1 & 1 \\ 0 & \frac{5}{2} \end{pmatrix}$	$ \begin{pmatrix} 0 \\ 5 \\ \hline{2} \\ 6 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} $	$\begin{bmatrix} 0 & \frac{1}{2} \\ 1 & \end{bmatrix}$	Q30 Strictly increasing: $\left(0, \frac{\pi}{4}\right) \cup \left(\frac{5\pi}{4}, 2\pi\right)$ Strictly decreasing: $\left(\frac{\pi}{4}, \frac{5\pi}{4}\right)$						
Q31	$log \left \frac{1+s}{2+s} \right $	$\frac{\sin x}{\sin x} + C$		Q34	x = 2 $y = 1$ $z = -1$	Q35	b)	$\frac{\frac{1}{2}(\pi - 2)}{5 - \frac{45}{2}\log\frac{5}{4} + \frac{5}{2}}$	$\frac{5}{2}\log\frac{3}{2}$	
Q36	length 20) / (π + 4) m	and breadth	10 / (π +	4) m	Q37	i) ii) iii)	95 (-∞, 2) a) 113 b)41)	
Q38	i) ii) iii)	2×1 ₹400 a. ₹ 10600 a b. $\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$	nd ₹21300							